## JUMO miroVIEW

Smart digital indicator with limit value monitoring function

## ${ }^{6} \mathbf{S O}_{1 \times}$



Operating Manual

Further information and downloads
qr-701580-en.jumo.info

## Contents

1 Safety ..... 7
1.1 Symbols and signal words ..... 7
1.2 Intended use ..... 7
1.3 Safety information .....  8
1.4 Qualification of personnel ..... 9
2 Description. ..... 11
2.1 General overview ..... 11
2.2 Brief description ..... 11
2.3 Identifying the device version ..... 12
2.3.1 Nameplate ..... 12
2.3.2 Order details ..... 13
2.3.3 Scope of delivery ..... 13
2.3.4 Accessories. ..... 13
2.4 Block diagram ..... 14
2.5 Indicator functions ..... 14
2.5.1 Min-max function. ..... 14
2.5.2 Hold function ..... 14
2.5.3 Tare function ..... 14
2.6 Inputs and outputs ..... 14
2.6.1 Analog and digital input. ..... 14
2.6.2 Digital outputs ..... 15
2.6.3 Micro USB connection ..... 15
2.7 Temperature display ..... 16
2.8 Limit value monitoring ..... 17
2.9 Timer ..... 18
3 Acceptance of goods, storage, and transport ..... 19
3.1 Checking the delivery ..... 19
3.2 Important information about storage and transport. ..... 19
3.3 Returning goods ..... 19
3.4 Disposal ..... 20
4 Mounting ..... 21
4.1 Installation instructions ..... 21
4.2 Dimensions .....  22
4.2.1 Type 701580 ..... 22
4.2.2 Panel cut-outs ..... 22
4.3 Panel mounting ..... 23

## Contents

5 Electrical connection ..... 25
5.1 Installation notes ..... 25
5.2 Connection elements ..... 26
5.3 Connection diagram ..... 27
5.3.1 Type 701580 ..... 28
5.4 Galvanic isolation ..... 29
6 Operation ..... 31
6.1 Display and control elements ..... 31
6.1.1 Operating overview ..... 33
6.1.2 The level concept ..... 34
6.2 Device response when switching on ..... 34
6.3 Handling input errors ..... 35
6.4 Language selection ..... 35
6.5 Basic status ..... 36
6.6 User level ..... 36
6.7 Level inhibit ..... 36
6.8 Standby mode ..... 36
6.9 Time formats ..... 37
7 Configuration ..... 39
7.1 Selectors ..... 39
7.1.1 Digital selector ..... 39
7.1.2 Analog selector ..... 40
7.2 Setup program ..... 40
7.2.1 Online parameters ..... 40
7.2.2 Start-up parameters ..... 42
7.2.3 Customized linearization ..... 43
7.3 Configuration - Menu ..... 44
7.3.1 System data ..... 44
7.3.2 Display and operation ..... 45
7.3.3 Analog input ..... 47
7.3.4 Digital input ..... 48
7.3.5 Indicator ..... 48
7.3.6 Limit value monitoring ..... 49
7.3.7 Service ..... 51
7.3.8 Digital control signals ..... 51
7.3.9 Timer ..... 54
7.3.10 Digital outputs ..... 55
7.4 Device info - Menu ..... 56

## Contents

8 Maintenance, cleaning, troubleshooting ..... 57
8.1 Service ..... 57
8.2 Maintenance ..... 57
8.3 Cleaning ..... 57
8.4 Troubleshooting ..... 58
8.4.1 Types of errors ..... 58
8.4.2 Error messages ..... 58
9 Technical data ..... 59
9.1 Analog input ..... 59
9.2 Digital input ..... 60
9.3 Digital outputs ..... 60
9.4 Display ..... 61
9.5 Electrical data ..... 61
9.6 Environmental influences ..... 62
9.7 Case ..... 62
9.8 Approvals and approval marks ..... 62

Contents

## 1 Safety

### 1.1 Symbols and signal words

## General

This manual contains information that must be observed in the interest of your own safety and to avoid material damage. This information is supported by symbols which are used in this manual as indicated.
Please read this manual before starting up the device. Store this manual in a place that is accessible to all users at all times.

If difficulties occur during startup, please do not intervene in any way that could jeopardize your warranty rights!

## Warning symbols

## DANGER!

This symbol indicates that personal injury from electrocution may occur if the appropriate precautionary measures are not taken.


## WARNING!

This symbol in connection with the signal word indicates that personal injury may occur if the respective precautionary measures are not carried out.


## CAUTION!

This symbol in connection with the signal word indicates that material damage or data loss will occur if the respective precautionary measures are not taken.


## CAUTION!

This symbol indicates that components could be destroyed by electrostatic discharge (ESD = Electro Static Discharge) if the respective cautionary measures are not taken.
Only use the ESD packages intended for this purpose to return device inserts, assembly groups, or assembly components.

## Note symbols

## NOTE!



## FURTHER INFORMATION!

This symbol is used in tables and indicates that further information is provided after the table.

## DISPOSAL!

At the end of its service life, the device and any batteries present do not belong in the trash! Please ensure that they are disposed of properly and in an environmentally friendly manner.

### 1.2 Intended use

The device is designed for use in an industrial environment as specified in the technical data. Other uses beyond those defined are not viewed as intended uses.

## 1 Safety

The device has been manufactured in compliance with applicable standards and directives as well as the applicable safety regulations. Nevertheless, improper use may lead to personal injury or material damage.
To avoid danger, only use the device:

- For the intended use
- When in good order and condition
- When taking the technical documentation provided into account

Risks resulting from the application may arise, e.g. as the result of missing safety provisions or wrong settings, even when the device is used properly and as intended.

### 1.3 Safety information

## DANGER!

## Risk to life due to electric shock

Risk of injury when touching live parts!

- Only qualified electricians are allowed to connect and install an electrical device that is not already ready to use.
- Before working on the system or device, switch off the voltage and secure it so that it cannot switch on again.
- Do not touch electronic components when they are live.
- Always observe the relevant accident prevention regulations and safety requirements for electrical devices.


## CAUTION!

## Risk of device damage

If the device is not supplied with the voltage specified on the nameplate, this could cause damage to the device.

- Only supply voltage from a voltage source that matches the specifications on the nameplate.



## CAUTION!

## The front of the device and housing have different protection types!

The protection type IP65 (front-side) is only guaranteed if the seal is flush and even.

- Use the mounting frame or both mounting elements as shown in the figure and ensure an even attachment!


### 1.4 Qualification of personnel

This document contains the necessary information for the intended use of the device to which it relates.
It is intended for staff with technical qualifications who have been specially trained and have the appropriate knowledge in the field of automation technology.
The appropriate level of knowledge and the technically fault-free implementation of the safety information and warnings contained in the technical documentation provided are prerequisites for risk-free mounting, installation, and startup as well as for ensuring safety when operating the described modules. Only qualified personnel have the required specialist knowledge to correctly interpret and implement the safety information and warnings contained in this document in specific situations.

1 Safety

### 2.1 General overview



| 1 | Type 701580 | 2 | Display |
| :--- | :--- | :--- | :--- |
| 3 | Front panel with membrane keyboard, <br> chapter 6.1 "Display and control elements", <br> Page 31 | 4 | Seal |
| 5 | Mounting frame | 6 | Nameplate, chapter 2.3.1 "Nameplate", <br> Page 12 |
| 7 | Rear view with terminal blocks, <br> chapter 5.2 "Connection elements", <br> Page 26 | 8 |  |

### 2.2 Brief description

The smart digital indicator is used for the electronic display of various process variables. The process variables are acquired by the device via RTD temperature probe, thermocouple, current $0(4)$ to 20 mA or voltage 0 to 10 V . Further functionalities are limit value monitoring, min/max value storage, hold function and tare function. The device is available with 2 relays or with 1 relay and 1 digital output (DC 0/ 14 V).
The device is characterized by simple, clearly structured operation supported by texts in English, German, French, and Spanish. Process values, texts, and parameters are shown in two 18-segment LCD displays. Additional display elements inform about the switch positions of the outputs, timer status, and temperature unit.
Terminal blocks with PUSH IN technology enable fast electrical installation.
Operation, parameterization, and configuration are carried out via a membrane keyboard with four keys. The setup program on a PC allows the device to be configured without any problems. No separate voltage supply is required when configuring via the USB interface (USB-powered).

## 2 Description

### 2.3 Identifying the device version

### 2.3.1 Nameplate

The specifications on the nameplate are for device identification purposes. It is affixed to the side of the device. You can also view some of the information under the menu item "Device info/versions".


| 1 | Data matrix code (for manufacturing purpos- <br> es only) | 2 | Note "Read the operating manual" |
| :--- | :--- | :--- | :--- |
| 3 | Production date, Pos. 12-15 of F no., year <br> number, calendar week | 4 | Part no. |
| 5 | Fabrication number (F no.:) | 6 | Switching capacity (relay output) |
| 7 | Voltage supply <br> D Direct voltage $\overline{-=}$ <br> - Alternating voltage | 8 | Type, corresponds to the order details |

## 2 Description

### 2.3.2 Order details

| (1) | Basic type |
| :---: | :---: |
| 701580 | Type 701580 with max. 2 relays, format ( $76 \times 36 \times 62$ ) mm |
| (2) | Version |
| 0 | Standard version |
| 1 | Customized hardware |
| 2 | Customized software |
| 3 | Customized hardware and software |
| (3) | Input (measurement input groups) ${ }^{\text {a }}$ |
| 01 | 1 RTD temperature probe Pt100, Pt1000 in two-wire circuit, 1 digital input |
| 02 | 1 RTD temperature probe Pt100, Pt1000 in three-wire circuit |
| 04 | 1 thermocouple and 1 digital input |
| 05 | 0(4) to 20 mA and 1 digital input |
| (4) | Output |
| 23 | 1 relay (changeover contact AC $250 \mathrm{~V}, 10 \mathrm{~A}$ ) and 1 relay (normally open contact AC $250 \mathrm{~V}, 5 \mathrm{~A}$ ), resistive load |
| 26 | 1 relay (normally open contact AC $250 \mathrm{~V}, 10 \mathrm{~A}$ ) resistive load and 1 digital output DC $0 / 14 \mathrm{~V}^{\text {b }}$ |
| (5) | Voltage supply |
| 02 | AC $230 \mathrm{~V},+10 /-15 \%, 48$ to 63 Hz |
| 05 | AC $115 \mathrm{~V},+10 /-15 \%, 48$ to $63 \mathrm{~Hz}^{\text {c }}$ |
| 30 | DC 12 to $24 \mathrm{~V}+15 /-15$ \% |
| (6) | Extra codes |
| 000 | None |

a It is not possible to switch from one measurement input group to another
b Minimum order quantity 50 pieces
c Minimum order quantity 50 pieces


### 2.3.3 Scope of delivery

## 1 device in the ordered version

1 quick start guide
1 mounting frame

### 2.3.4 Accessories

| Description | Part no. |
| :--- | :--- |
| Setup program | 00777355 |
| USB cable, A connector to Micro-B connector, length 3 m | 00616250 |

## 2 Description

### 2.4 Block diagram



### 2.5 Indicator functions

In addition to the classic display of the measured value, the device has additional functions such as min/ max value display, a hold function for freezing the measured value and a tare function for weighing applications. Some functions can be configured via the membrane keypad on the front. All functions can be conveniently configured via PC or notebook using the comfortable setup program.

### 2.5.1 Min-max function

The indicator provides the display of the measured min value and the max value. These values can also be shown automatically one after the other on the display in the so-called scroll mode. The determined min and max values can be reset to the current indicator value via a digital selector.

### 2.5.2 Hold function

The hold function is used to "freeze" the value of the indicator. This value is displayed as long as the controlling binary signal is active.

### 2.5.3 Tare function

The value of the indicator is set to zero with the taring function, controlled by a binary signal (weighing function). The currently displayed value is added to the tare value each time.
The tare value can be reset to zero by another binary signal. The display then shows the current value again.

### 2.6 Inputs and outputs

### 2.6.1 Analog and digital input

The device is equipped with an analog input and maybe with a digital input.
The type of analog input has to be determined when ordering the device.

## NOTE!

A device with an analog input for RTD temperature probes ( $\mathrm{Pt} 100, \mathrm{Pt} 1000$ ) in three-wire circuit does not have a digital input.

## 2 Description

## Analog input

The analog input provides the device with the indicator actual value (measured value), which is then processed according to the selected device functions.

## NOTE!

A customer-specific linearization of the analog input can be configured in the setup program with a formula or a table with max. 40 value pairs.

## Digital input

The digital input is for the purpose of activating various different functions, such as the hold function for freezing the measured value. The digital input can be operated through closing and opening an external potential-free contact.

### 2.6.2 Digital outputs

The device is equipped with up to two digital outputs (relay outputs, digital output $0 / 14 \mathrm{~V}$ ).
The device can switch actuators, such as solid state relays or power contactors, via the digital output $0 /$ 14 V . Depending on the ordered variant, the device has one of the following output configurations:

| Order <br> code | Description |
| :--- | :--- |
| 23 | $1 \times$ changeover contact relay AC $250 \mathrm{~V}, 10 \mathrm{~A}$ (resistive load) <br> $1 \times$ normally open contact relay AC $250 \mathrm{~V}, 5 \mathrm{~A}$ (resistive load) |
| 26 | $1 \times$ normally open contact relay AC $250 \mathrm{~V}, 10 \mathrm{~A}$ (resistive load) <br> $1 \times$ digital output DC $0 / 14 \mathrm{~V}$ |

### 2.6.3 Micro USB connection

The device has a type B micro USB socket, which functions as a setup interface. This socket can be used to establish a connection to a PC or Notebook on which the setup program has been installed. The setup program can be used to configure the device, for which there is an extensive range of configuration options.

## NOTE!

The setup interface (USB) is not intended to be used for a permanent connection.
Always disconnect the USB cable from the device as soon as you have finished working with the setup program.
The length of the USB cable should not exceed 5 m .
It is not possible to establish the connection via a USB hub.

## 2 Description

### 2.7 Temperature display

The temperature unit can be set to ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}$ or "none" via a global parameter. Internally, the device always works in ${ }^{\circ} \mathrm{C}$. After being changed to ${ }^{\circ} \mathrm{F}$, the device converts all of the values for operation, display, and the interfaces.

## NOTE!

The device converts the entire configuration, such that even a configuration set up in ${ }^{\circ} \mathrm{C}$ works that same when changed to ${ }^{\circ} \mathrm{F}$.

For this, the following parameters are converted when shown on the display:

- Measured value
- Scaling start/end, offset
- Limit values, switching differential
- Tolerance band

If the parameter is configured to "none", the icons for ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$ are hidden on the display. (purely for timer applications).
For all variables for which the unit is clearly a temperature, this is known to the firmware. There is no configuration setting. For variables that the device is unable to clearly assign as a temperature value, the unit is set by a "temperature none/relative/absolute" configuration parameter.
The device always selects the correct, appropriate unit for showing the measured value on the display.

## 2 Description

### 2.8 Limit value monitoring

The limit value monitoring function can be used to monitor any analog signal with different switching functions. There are 2 alarm functions (AF7, AF8) with different switching characteristics stored on the device. These are limit value related switching functions (limit value based on the setpoint)

For the limit value monitoring function, the following additional functions are also available:

| Switch on/off delay | - After the AF event has occurred, the switch-on delay starts to elapse; the AF output remains unchanged <br> - After the switch-on delay has elapsed, the AF event is passed on to the AF output <br> - If the AF actual value goes out of the "invalid range" during this delay time, the time countdown restarts each time the value goes beyond the limit value <br> - Switch-off delay (behavior similar to switch-on delay) |  |
| :---: | :---: | :---: |
| Pulse function | - The AF output is automatically reset if the value goes beyond the limit value after the set pulse time <br> - If the AF actual value goes into the "valid range" during this time, the pulse time is reset <br> - The pulse function has priority over the switch-off delay; a programmed switch-off delay has no effect |  |
| Startup alarm suppression | OFF | The alarm function is always active. The limit value exceedance is also immediately transmitted to the output signal in the switch-on phase or in the event of parameter changes |
|  | ON | The AF output only becomes active when the "valid range" has been reached for the first time. If, for example, the device is switched on, the limit value exceedance is not transmitted to the output signal. |
| Lock | OFF | Lock is not active: <br> - The AF output is reset as soon as the AF event no longer applies |
|  | ON | Lock is active: <br> - The AF output is retained, even if the AF event no longer applies <br> - The AF output can only be acknowledged if the AF event no longer applies <br> - Acknowledgement via: keypad, binary signal |
|  | Always acknowledgeable | Lock is active: <br> - The AF output can always be acknowledged <br> - Acknowledgement via: keypad, binary signal |

## 2 Description

## $2.9 \quad$ Timer

The device has a timer. The timer signal can be output via digital outputs or used for internal functional links. A relative timer time can be configured. Following start of the timer via the keypad or a digital signal, a signal is output for the timer runtime. Once the timer has ended, the device provides a timer end signal.

The timer start time can be delayed by setting a lead time. The timer end signal can also be set as infinite. With this setting, the timer must be acknowledged in order to be ended.

The timer start time can be delayed through a tolerance band around the setpoint value. Monitoring of the tolerance band during the timer runtime can be configured.
The timer signal to be output can be inverted.

## NOTE!

The digital signals are inactive after power ON. No timer values are saved beyond power failure.

## 3 Acceptance of goods, storage, and transport

### 3.1 Checking the delivery

- Ensure that the packaging and its contents are undamaged.
- Check the delivery for completeness against the packing slip and order details.
- Inform the supplier immediately if there is any damage.
- Store damaged parts until clarification is received from the supplier.


### 3.2 Important information about storage and transport

- Store the device in a dry, clean environment. Observe the admissible ambient conditions (see "Technical data")
- Protect the device from shock during transport
- The original packaging provides optimum protection for storage and transport


### 3.3 Returning goods

If repairs are needed, return the complete device in clean condition.
Use the original packaging to return goods.

## Accompanying letter for repair

Please include the completed accompanying letter for repair when returning goods.
Do not forget to state the following:

- Description of the application and
- Description of the error that has occurred

The accompanying letter for repair (supplementary sheet for product returns) can be downloaded online from the manufacturer's website:
http://productreturn.jumo.info

## Protection against electrostatic discharge (ESD)

## (ESD = electrostatic discharge)

To prevent damage due to ESD, electronic modules or components must be handled, packaged, and stored in an ESD-protected environment. Measures that protect against electrostatic discharge and electric fields are described in DIN EN 61340-5-1 and DIN EN 61340-5-2 "Protection of electronic devices from electrostatic phenomena".
When sending back electronic modules or components, please note the following:

- Pack sensitive components only in an environment providing protection against ESD. Workspaces such as this divert electrostatic charges to ground in a controlled manner and prevent static charges due to friction.
- Use only packaging intended specifically for ESD-sensitive modules/components. These must consist of conductive plastics.

No liability can be assumed for damage caused by ESD.

## CAUTION!

Electrostatic charges occur in non-ESD-protected environments.
Electrostatic discharges can damage modules or components.

- For transport purposes, use only the ESD packaging provided.


## 3 Acceptance of goods, storage, and transport

### 3.4 Disposal

## Disposing of the device



## DISPOSAL!

Devices and/or replaced parts should not be placed in the refuse bin at the end of their service life as they consist of materials that can be recycled by specialist recycling plants.
Dispose of the device and the packaging material in a proper and environmentally friendly manner.
For this purpose, observe the country-specific laws and regulations for waste treatment and disposal.
Disposing of the packaging material
The entire packaging material (cardboard packaging, inserts, plastic film, and plastic bags) is fully recyclable.

### 4.1 Installation instructions

## WARNING!

The device is not designed for use in potentially explosive areas.
Explosion hazard.

- Only deploy the device outside of potentially explosive areas.


## Mounting site

The device is designed for installation in a panel cut-out within a closed switch cabinet. The front of the device and housing have different protection types (see technical data).

## Climatic conditions

The ambient temperature and the relative humidity at the mounting site must correspond to the technical data. Aggressive gases and vapors have a negative effect on the operating life of the device. The mounting site must be free from dust, powder, and other suspended solids.

## Installation position

The device can be installed in any position.
The maximum admissible ambient temperature only applies for the installation with the display in a vertical position.

## Technical data

$\Rightarrow$ chapter 9 "Technical data", Page 59

## 4 Mounting

### 4.2 Dimensions

4.2.1 $\quad$ Type 701580


### 4.2.2 Panel cut-outs

Panel cut-outs according to DIN IEC 61554

| Type | Panel cut-out <br> (width $\boldsymbol{x}$ height) | Mounting depth <br> without seal | Minimum spacing of panel <br> cut-outs (for close mounting) |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  | With terminal blocks | Horizontal | Vertical |
| 701580 | $69+1 \mathrm{~mm} \times 28.5+1 \mathrm{~mm}$ | 62 mm | 15 mm | 30 mm |

### 4.3 Panel mounting

## CAUTION!

## The front of the device and housing have different protection types!

The protection type IP65 (front-side) is only guaranteed if the seal is flush and even.

- Use the mounting frame or both mounting elements as shown in the figure and ensure an even attachment!


| 1 | Device | 2 | Panel |
| :--- | :--- | :--- | :--- |
| 3 | Seal and case front | 4 | Panel cut-out |
| 5 | Mounting frame |  |  |

1. Create panel cut-out $69+1 \mathrm{~mm} \times 28.5+1 \mathrm{~mm}$.
2. Insert the device from the front into the panel cut-out and ensure that the seal is correctly positioned.
3. Push the mounting frame from the panel rear onto the device body and press the springs against the panel rear until the detent lugs engage in their slots and the frame is sufficiently fastened.

The detent lugs of the mounting frame slot into the mounting slots of the housing upper and lower side.
The device is mounted mechanically.

## NOTE!

The electrical connections should not be established until the mounting frame has been slid onto the device.

## 4 Mounting

## 5 Electrical connection

### 5.1 Installation notes

## Requirements for personnel

- Work on the device must only be carried out to the extent described and, like the electrical connection, only by qualified personnel.
- Before plugging and unplugging connecting cables, it must be ensured that the acting person is electrostatically discharged (by touching grounded metallic parts, for example).


## Cables, shielding, and grounding

- When selecting the electrical wiring material as well as when installing and connecting the device electrically, comply with the requirements of DIN VDE 0100 "Low-voltage electrical installations" and the applicable country-specific regulations (for example, based on IEC 60364).
- It may be necessary to adhere to special notes relating to the heat resistance of cables (see connection diagram).
- Route input, output, and supply lines separately and not parallel to one another.
- Only use shielded and twisted probe and interface cables. Do not route the lines close to currentcarrying components or cables.
- For temperature probes, ground the shielding on one side in the control cabinet.
- Do not perform loopthroughs on the grounding cables, but instead route the cables individually to a shared grounding point in the control cabinet; in doing so, ensure that the cables are as short as possible.
Ensure that the potential equalization is correct.


## Electrical safety

- The device is intended to be installed in control cabinets or plants. Ensure that the customer's fuse protection does not exceed 20 A . Disconnect the device from the mains voltage on all poles prior to starting service or repair work.
- The relay's load circuit can be operated with a hazardous electrical voltage (e.g. 230 V ). De-energize the load circuit during mounting/dismounting and electrical connection.
- To prevent the relay contacts being destroyed in the case of an external short-circuit in the load circuit, the latter must be fuse-protected as per the maximum admissible relay current (see technical data).
- The device is not suitable for installation in potentially explosive areas.
- In addition to a faulty installation, incorrectly set values on the device can also impair the correct function of the downstream process. Therefore, ensure that safety devices independent of the device, e.g., overpressure valves or temperature limiters/monitors, are present and that it is only possible for qualified personnel to define settings. Please observe the corresponding safety regulations in this context.


## References to other information

- The electromagnetic compatibility conforms to the standards and regulations cited in the technical data.
- In general, please observe the specifications regarding electrical isolation.


## 5 Electrical connection

## DANGER!

## Risk to life due to electric shock

Risk of injury when touching live parts!

- Only qualified electricians are allowed to connect and install an electrical device that is not already ready to use.
- Before working on the system or device, switch off the voltage and secure it so that it cannot switch on again.
- Do not touch electronic components when they are live.
- Always observe the relevant accident prevention regulations and safety requirements for electrical devices.


### 5.2 Connection elements

## NOTE!

Please refer to the sticker on the device for the correct terminal assignment.
As a general rule, use ferrules when connecting stranded cables.
Spring-cage terminals (PUSH IN technology) are used for the electrical connection process, which saves users valuable time.
The connections are consolidated by type into four groups:

- 1 - Micro USB (setup interface)
- 2 - Analog input (sensor) and digital input
- 3 - Voltage supply (see nameplate)
- 4 - Digital outputs



## Electrical connection of the device

1. Remove 8 mm of the insulation from the wire or stranded wire.
2. Put ferrules on the stranded wires.
3. Establish the connections according to the diagrams on the following pages.

## 5 Electrical connection

### 5.3 Connection diagram

## CAUTION!

## Risk of device damage

If the device is not supplied with the voltage specified on the nameplate, this could cause damage to the device.

- Only supply voltage from a voltage source that matches the specifications on the nameplate.


## CAUTION!

In unfavorable conditions, the temperature may exceed $60^{\circ} \mathrm{C}$ at the terminals.
As a result, the insulation of the lines connected at the terminals may be damaged.

- The affected cables must be heat-resistant up to at least $80^{\circ} \mathrm{C}$.
- Relay 10 A: the affected cables must be heat-resistant up to at least $85^{\circ} \mathrm{C}$.

NOTE!
Only copper conductors are allowed to be connected to the terminals.

## 5 Electrical connection

### 5.3.1 Type 701580



Terminal strip 2:
Analog input, digital input
RTD temperature probe in three-wire circuit (no digital input)


RTD temperature probe in two-wire circuit and
Digital input


Thermocouple and digital input


Current 0(4) to 20 mA and digital input


Voltage 0 to 10 V and digital input


## Terminal strip 3:

L1(L+), N(L-)
Voltage supply (see nameplate)
AC $230 \mathrm{~V}, 48$ to 63 Hz or
AC $115 \mathrm{~V}, 48$ to 63 Hz or
DC 12 to 24 V

## Terminal strip 4:

Digital outputs
1 relay changeover contact,
1 relay normally open contact

Digital output 1 (changeover contact) and digital output 2 (normally open contact):


The two relays are not allowed to be operated on different mains voltage circuits. It is also not admissible to mix how the relays are operated - using a SELV electrical circuit and a mains supply circuit.

1 relay normally open contact,
1 digital output DC 0/14 V

Digital output 1 (normally open contact)
and
digital output 2 (DC 0/14 V):


## 5 Electrical connection

### 5.4 Galvanic isolation



| a | The voltage specifications correspond to the <br> test voltages (alternating voltage, rms val- <br> ues) <br> according to DIN EN 61010-1 (VDE 0411- <br> 1):2020-03 | b | Functional galvanic isolation for <br> connecting SELV or PELV <br> electrical circuits |
| :--- | :--- | :--- | :--- |
| 1 | Type 701580 (order code 23): <br> 2 relay outputs (changeover contact, normal- <br> ly open contact) <br> The two relay outputs are not allowed to be <br> operated on different mains voltage circuits. <br> t is also not admissible to mix how the relay <br> outputs are operated - using a SELV electri- <br> cal circuit and a mains supply circuit. | 2 | Type 701580: Not available. |
| 3 | Type 701580 (order code 26): <br> 1 relay output (normally open contact) | 4 | Type 701580 (order code 26): <br> 1 digital output DC 0/14 V |
| 5 | or | 6 | Voltage supply DC 12 V to 24 V |
| 7 | Voltage supply 230 V, 48 to 63 Hz <br> $115 \mathrm{~V}, 48$ to 63 Hz | 8 | USB interface |
| 9 | Digital input | 10 | Analog input |

## CAUTION!

The analog input and the USB interface are not galvanically isolated.

- Do not connect the USB with a grounded sensor if the ground of the PC is also grounded (e.g. a desktop PC).


## 5 Electrical connection

The primary operator interface on the device is the front side membrane keyboard with the display. It enables users to quickly operate and configure the device at the device installation location. Non-relevant parameters, sub-parameters, selector and selection settings are hidden by the software for operation of the device if

- the device does not have the hardware,
- the option is not enabled,
- the function is switched off,
- the function does not match the parameter.

The individual parameters for device setting are organized in different levels that can be inhibited. A level inhibit helps to prevent accidental or unauthorized operation.
As soon as a value can be edited, it starts flashing on the display. If you click the "OK/Menu" key, the device accepts the set value. You can abort the process and retain the old value by pressing the "BACK" key.
The 30-day test version of the setup program allows you to easily configure the device using a PC. The following functions can only be configured with the setup program.

- User level
- Customer-specific linearization

The setup program is available to download. The license number for the full version of the setup program is available for a fee and can be requested from your sales partner.

### 6.1 Display and control elements



| 1 | Display 1 - 18-segment LCD display (e.g. <br> analog input), 4-digit, white; <br> also for displaying menu items, parameters <br> and text | 2 | Display 2 - 18-segment LCD display (e.g. <br> text), 7-digit green; <br> displaying of menu items, parameters, text <br> and values; here individually configured <br> measuring point designation (ZONE 1) |
| :--- | :--- | :--- | :--- |
| 3 | Timer (illuminated = on, flashing = started), <br> Temperature Unit | 4 | Switch position of the digital outputs (yellow <br> = active) |
| 5 | Up (in the menu: increase value, select pre- <br> vious menu item or parameter) | 6 | Down (in the menu: reduce value, select <br> next menu item or parameter) |
| 7 | Back (in menu: back to previous menu level, <br> exit editing mode without change; in basic <br> status: configurable function) | 8 | Menu/OK (call up main menu, switch to sub- <br> menu/level, switch to editing mode, exit edit- <br> ing mode with change) |

## NOTE!

As display 1 and display 2 are restricted to 4 or 7 characters, menu titles and indicators are displayed as running text. The speed of the running text can be adjusted in the menu > "Configuration/Display/Operation/Running speed" to one's personal requirements.

## 6 Operation

The text runs when the menu item or the function is called up. Once the text has run all the way through, display 1 remains at the first 4 characters. The text in display 2 continues running as long as the text is longer than 7 characters.
If the function from display 2 is selected with the Menu/OK key, the display flashes.
The display stops flashing when the function is aborted with the "Back" button or selected/confirmed with the "Menu/OK" key.

### 6.1.1 Operating overview

## Navigation



## Button functions

| $\begin{array}{l}\text { Button or button com- } \\ \text { bination (permanent) }\end{array}$ | In basic status | $\begin{array}{c}\text { Function } \\ \text { When navigating }\end{array}$ | When editing |
| :--- | :--- | :--- | :--- |\(\left.\left.| \begin{array}{l}Select previous menu <br>

item or parameter\end{array}\right) $$
\begin{array}{l}\text { Increase value or go up } \\
\text { in picklist }\end{array}
$$\right]\)

## 6 Operation

| Button or button combination (permanent) | In basic status | Function <br> When navigating | When editing |
| :---: | :---: | :---: | :---: |
| Down + Menu/OK very long (> 5 s) | Call up menu for level inhibit | --- | --- |
|  |  |  |  |

### 6.1.2 The level concept



### 6.2 Device response when switching on

Once the voltage supply is switched on, the controller first starts a test routine. All of the segments on the display briefly light up. Then the device displays the currently configured settings.
These are:

- the measured temperature,
- the displayed measurand $\left({ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\right)$,
- the symbol for the timer function (if activated),
- if applicable, the symbol of the controlled outputs.


## NOTE!

The device saves the configured display values. If the voltage supply to the device was interrupted and re-established, the device displays the previously parameterized values.
If a start-up delay is configured, the remaining running time of the start-up delay is shown in the 1st display, and "WAIT" appears in the 2nd display.

## 6 Operation

### 6.3 Handling input errors

Operating level input errors via device buttons
The software checks the value range and length of input values in the operating level. Invalid values are not accepted.

## Checking values of configuration data

A potential error source can be the input and specification of incorrect configuration and parameter data.

- The device software checks the value range all of the entries on the device upon data transfer (keypad, setup interface).
- The setup program itself checks the value range of entries and disallows the input of implausible values.
The device software does not carry out a full plausibility check if, within the configuration level, data is input via the device keypad or the setup program.


## NOTE!

The person who carries out the configuration should first plan how the device is to be configured and then carry out the configuration carefully.
Retrospective changes should be performed by a person who can assess the effects on other configuration parameters and program settings.

### 6.4 Language selection

After switching on the device for the first time, the user can either confirm the flashing displayed language with "OK" or select another language using the "Up"/"Down" buttons and then confirm this with "OK".

After applying a language, the device automatically sets this parameter to "OFF", meaning that language selection is not necessary the next time the device is switched on.
If, at a later point, another user is also to have the option of selecting a language, the configuration parameter "LANGUAGE SELECT. POWER ON" can be set to "ON" in the menu (Configuration > System data).
The language of the device texts can be changed at any time in the configuration settings. This is irrespective of the language selection after switching on the device.

## 6 Operation

### 6.5 Basic status

Following "power on" and initialization, if applicable with a configured start-up delay, the device reaches the basic status.

Default setting:


| 1 | Display 1 - analog input | 2 | Display 2 - e.g. individually configured <br> measuring point identifier (ZONE 1) |
| :--- | :--- | :--- | :--- |

## Timer runtime/timer remaining running time

If the timer is on and the function "Change display upon timer start" has been configured, display 2 shows the previously finished timer runtime or the remaining running time.

### 6.6 User level

Any of up to 8 parameters can be selected via the setup program. The user level is not configured per default.

### 6.7 Level inhibit

Access to the individual levels can be inhibited. To activate the level inhibit, press and hold the "Menu/ OK" and "Down" buttons at the same time for longer than 5 seconds.
The desired degree of inhibition can be selected using the "Up" and "Down" buttons and confirmed using the "Menu/OK" button.

```
Inhibited levels
NONE (all levels free; default setting)
CONFIGURATION
COMPLETE (USER LEVEL, CONFIGURATION, DEVICE INFO)
```

When the configuration is locked, it is also not possible to reset the device to the default setting (Device info > Service > Default setting).

### 6.8 Standby mode

In standby mode, the device controller sets all of the digital outputs to inactive/deactivated. The device initiates standby mode via a configurable digital signal. If the digital signal = high, standby mode is active.
The device signals standby mode via the flashing 2nd display "STANDBY".

## $6.9 \quad$ Time formats

The time format can be configured for the timer function:
MM:SS - Minutes:Seconds
HH:MM - Hours:Minutes
DD:HH - Days:Hours
Time formats on the device are configured in the menu >CONFIGURATION/TIMER/TIME DISPLAY.
It is only possible to set these when the timer is switched on.

1. Navigate to the CONFIGURATION/TIMER/TIME DISPLAY menu.
2. Press OK/MENU.

The 2nd display with the time format flashes.
3. Use DOWN or UP to select the desired time format.
4. Press OK/MENU.

The 2nd display stops flashing.
5. Press the Back button $3 x$ to return to the basic display.

The time format for the timer is set

## 6 Operation

## 7 Configuration

NOTE!
How the individual menu items on the device are displayed always depends on the hardware that is used and on the device function.

### 7.1 Selectors

The purpose of selectors is to connect the output variables of a device function with the input measurands of another device function. The device differentiates between digital and analog selectors. The selectors contain all of the relevant process values that are present in the device.

Process values that are not present in the present device configuration are hidden by the device.

### 7.1.1 Digital selector

The digital functions listed below are available for the configuration (digital selector).

| Function | Note |
| :--- | :--- |
| No selection | No signal selected |
| Digital input | Signal of digital input |
| Limit value output 1, 2, 3 | Alarm signals of limit value monitoring functions <br> $1-3$ |
| Timer output | The signal is active from timer start until the timer <br> elapses <br> (high active or low active, configurable). |
| Timer end signal | The signal is active after the timer elapses for the <br> duration of the after-run time (or until acknowl- <br> edgement). |
| 1st/2nd digital control signal | Output signals of the respective function <br> (configurable) |
| Service signal | The signal is activated if the service counter has <br> reached the set limit value and remains active <br> until acknowledgement. |
| Short return key <3 s | The signal is active (for the duration of a sam- <br> pling period) after briefly pressing the "Back" but- <br> ton. |
| Long return key $>3 \mathrm{~s}$ | The signal is active (for the duration of a sam- <br> pling period) after long-pressing the "Back" but- <br> ton. |

## 7 Configuration

### 7.1.2 Analog selector

The following list of analog functions are available to select from in the configuration (analog selector).

| Function | Note |
| :--- | :--- |
| No selection | No signal selected |
| Analog input | Analog input signal |
| Terminal temperature | Only with thermocouple |
| Timer runtime | Runtime of the timer |
| Timer remaining running time | Remaining runtime of the timer |
| Timer value | Set timer time |
| Indicator value | Minimum value determined by the min-max func- <br> tion |
| Min value | Maximum value determined by the min-max <br> function |
| Max value | Service counter reading; <br> number or time, configuration dependent; <br> Not configurable for display 1 |
| Service counter | Operating hours counter reading; <br> in hours or dass, depending on configuration; <br> Not configurable for display 1 |
| Operating time |  |

### 7.2 Setup program

The setup program helps users to easily configure the devices. It comes with the following language options: German, English, French, and Spanish.
The setup program can be used to create the configuration data of the devices, save them in a file, and transfer them to the device. It is also possible to extract the configuration data of the device. Data is transferred serially using the USB interface (setup interface). The data can be printed off for use as system documentation.
A 30-day test version of the setup program is available for download. The license number for the full version is available for a fee and can be requested from your sales partner.

### 7.2.1 Online parameters

An active connection between the setup program and the device is required for executing these functions.

## Fine adjustment

You can use this function to correct the measured values of the analog input. In contrast to measured value offsetting, which is used to specify a constant correction value for the entire characteristic line, fine adjustment can also be used to change the gradient of the characteristic line.
This function is identical to the fine adjustment in the device (see configuration of the analog input).

## Approval of extra codes

You can use this function to activate additional functions (extra codes) for the device via the setup program.

## 7 Configuration

| Action | Version | Description |
| :--- | :--- | :--- |
| Generate code number | To generate a code number, click the <br> function to select it and then click the <br> "Next" button. Follow the other in- <br> structions. | This function is used to generate a <br> code number to activate an extra <br> code. The code number is required to <br> obtain an activation code from a sales <br> partner. |
| Enter activation code | To enter an activation code, click the <br> function to select it and then click the <br> "Next" button. Follow the other in- <br> structions. | This function is used to activate an <br> extra code. This requires the activa- <br> tion code received from the sales <br> partner. |
| Reset extra codes | To reset extra codes, click the func- <br> tion to select it and then click the <br> "Next" button. Follow the other in- <br> structions. | This function can be used to lock an <br> extra code that has been activated. <br> Locked extra codes can only be acti- <br> vated by re-enabling. This procedure <br> is subject to charge. |

## Calibrate/test

The following functions are available in this menu:

- Hardware/software: This window displays the hardware and software status of the device.
- Calibration constants: This window displays the calibration constants of the analog input.
- Analog input: This function tests the analog input. For this, the signal or sensor must be connected to the analog input.
- Digital input: This function displays the logical status at the digital input. Any inversion activated in the configuration is not considered.
- Digital outputs: This function is used to set the logical statuses at the digital outputs. Any inversion activated in the configuration of the respective digital output is not considered.
- Display: This function is used to activate or deactivate all display elements of the device.
- Keypad: This function checks all the keys on the device. After pressing "Read keys", each press of a key on the device is shown by a red circle around the corresponding key in the setup program.


## 7 Configuration

### 7.2.2 Start-up parameters

The start-up function allows the visualization and recording of process values in real time. This considerably simplifies the startup of a system, for example. The maximum recording duration is 24 hours. The files that are created when the data is recorded can be saved and printed out.

## Process values

Up to 13 process values for the visualization, recording, and display in the online data window of the setup program are selected in this window ("Process values for start-up" tab). These are analog and digital signals from the selectors.

## Display

This window displays the selected process values as a line chart (analog curve or digital trace).
Various functions are available via a context menu (right mouse button):

- Zoom function
- Print function
- Setting channel properties (process values) for the visualization
- Setting diagram properties
- Setting input signals (according to the function under "Process values")
- Starting and stopping recording (active connection between the setup program and the device required)
- Loading recorded measurement data for the visualization


## Protocol

This function is used to log and print the recorded diagram (startup protocol).
There are some text entry fields that can be used for the description at the bottom edge of the diagram. Alternatively, the texts from the file info of the setup file can also be used here. There is also one field for the date (editable) and one for the signature.
There is a print function, incl. print preview and printer selection, available via a context menu (right mouse button). The features for the protocol to be printed are also defined here (page margins, line type, use of texts from the file info header).

## 7 Configuration

### 7.2.3 Customized linearization

The user can create an individual linearization characteristic line for the analog input with the customerspecific linearization. Two procedures are available for this (type of linearization): formula or grid points (value pairs).

The text entered under "designation" is not used at another point in the setup program, but serves merely as text in the sense of a brief description.

## Formula

Linearization is specified using a formula with five coefficients (4th order polynomial).
Polynomial: $y=X 4^{*} x^{4}+X 3^{*} x^{3}+X 2^{*} x^{2}+X 1^{*} x+X 0$

| Parameter | Selection/text/value | Description |
| :--- | :--- | :--- |
| Measuring range start | -1999 to $9999(\mathbf{0})$ | Start value of the y axis (linearized value) |
| Measuring range end | -1999 to $9999(\mathbf{1 0 0})$ | End value of the y axis (linearized value) |
| X0 | -1999 to $9999(\mathbf{0})$ | Absolute component of the polynomial (point of in- <br> tersection with the y axis) |
| X1 | -1999 to $9999(\mathbf{0})$ | Coefficient of the linear component $(\mathrm{x})$ |
| X2 | -1999 to $9999(\mathbf{0})$ | Coefficient of the quadratic component $\left(\mathrm{x}^{2}\right)$ |
| X3 | -1999 to $9999(\mathbf{0})$ | Coefficient of the cubic component $\left(\mathrm{x}^{3}\right)$ |
| X4 | -1999 to $9999(\mathbf{0})$ | Coefficient of the quartic component $\left(\mathrm{x}^{4}\right)$ |

## "Display graphic" button (displaying linearization on a graphic):

Use this button to create a graphic of the linearization.
The graphic includes the characteristic lines for both types of linearization where applicable, namely the formula and the grid points (table).
The display range for the graphic is initially determined by the "measuring range start" and "measuring range end" values ( $y$ values); it can be temporarily changed in the display by entering different $x$ values.

## Grid points

Linearization is specified by entering up to 40 grid points (pairs of values $X, Y$ ). The value $X$ stands for the physically measured value (resistance in $\Omega$ or voltage in mV ) for a RTD temperature probe or thermocouple. With the other signal types, the input variable is scaled to 0 to $100 \%$ (for voltage/current signal of measuring range, for resistance/potentiometer of resistance $R x$, for resistance transmitter of overall resistance). The value Y is the linearized value (e.g., temperature in ${ }^{\circ} \mathrm{C}$ ).

| Parameter | Selection/text/value | Description |
| :--- | :--- | :--- |
| Measured value $(\mathrm{X})$ | -1999 to $9999(\mathbf{0})$ | Value of the relevant grid point on the $x$ axis |
| Linearized value $(\mathrm{Y})$ | -1999 to $9999(\mathbf{0})$ | Value of the relevant grid point on the $y$ axis |

## $f_{x}$ button (calculating the polynomial using the grid points):

After entering the value pairs, use this button to calculate a polynomial that describes the progression of the linearization characteristic line.
The calculated coefficients are incorporated into the formula. The characteristic lines for both types of linearization then correspond to each other.
If the $x$ values do not increase in a straight line, the linearization is not applied. In this case, it is impossible to display the graphic or calculate the polynomial.

## "Display graphic" button (displaying linearization on a graphic):

Use this button to create a graphic of the linearization.

## 7 Configuration

The graphic includes the characteristic lines for both types of linearization where applicable, namely the grid points (table) and the formula.
The display range for the graphic is initially determined by the smallest and largest grid points; it can be temporarily changed in the display by entering different $x$ values.

### 7.3 Configuration - Menu

### 7.3.1 System data

## System data with the setup program and on the device

The basic settings of the device can be specified in this menu.

| Parameter | Value | Default setting | Description |
| :---: | :---: | :---: | :---: |
| Device name | <Device name> (editable) | <Name> | Device designation (in the "Device information" menu) |
| Language | German | German | National language of display texts |
|  | English |  |  |
|  | French |  |  |
|  | Spanish |  |  |
| Language select. aft. Power-On |  | Off | Language selection after switching on the next time |
|  | Off |  | Selecting "Off" means that language selection is not necessary the next time the device is switched on. <br> After selecting a language, this parameter is automatically set to "No". |
|  | On |  | If "On" is selected, the user can select the language for the device texts the next time the device is switched on - following the change to the configuration. |
| Temperature unit | Deg. Celsius | Deg. Celsius | Temperature unit for the display on the device and in the setup program (automatic conversion from ${ }^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$ ) |
|  | Deg. Fahrenheit |  |  |
|  | None |  |  |
| Standby | Digital selector, see page 39 | No selection | This signal puts the device into standby mode |

## 7 Configuration

### 7.3.2 Display and operation

## Display/operation with the setup program

The settings for the display/operation of the device are specified in this menu.

| Parameter | Value | Default setting | Description |
| :---: | :---: | :---: | :---: |
| Display |  |  |  |
| Display 1 | Analog selector, siehe Seite 40 | Analog input | Display value of the upper LED display (white) |
| Message text 1 | (editable) |  | Is displayed as soon as the message text 1 signal accepts the logic level " 1 ". <br> Is not displayed if the message text 1 signal accepts the logic level " 0 ". |
| Message text 1 signal | Digital selector, siehe Seite 39 | No selection | Setting for which value is to trigger message text 1. |
| Display 2 | Analog selector, siehe Seite 40 | No selection | Display value of the lower LED display (green) |
| Message text 2 | (editable) |  | Is displayed as soon as the message text 2 signal accepts the logic level "1". <br> Is not displayed if the message text 2 signal accepts the logic level " 0 ". |
| Message text 2 signal | Digital selector, siehe Seite 39 | No selection | Setting for which value is to trigger message text 2. |
| Display change upon timer start |  | Timer remaining running time | Display changes when timer is started |
|  | No function |  | No display change |
|  | Timer remaining running time |  | Display of the remaining running time |
|  | Timer runtime |  | Display of the runtime |
| Run speed | 0 to 4 | 4 | "4" corresponds to the fastest running speed |
| Operation |  |  |  |
| Short-press back button (<3 s) | No function Display timer value | No function | Function of the "Back" button in the basic status when short-pressing the button (less than 3 seconds) <br> Additional functions of the button can be selected in the configuration of the individual device functions (digital selector, see page 39 ). |
| Long-press back button (> 3 s) |  | No function | Function of the "Back" button in the basic status when long-pressing the button (longer than 3 seconds) |
| Operation timeout | $0 \mathrm{~s}, 30$ to 180 s | 180 s | Time period (in seconds), after which the device automatically returns to the basic status if no key is pressed. |
| Auto save | No (empty) | No (empty) | The "Menu/OK" button must be pressed to exit editing mode with the acceptance of a change. |
|  | Yes (check) |  | Editing mode is automatically exited after a certain time and a change is accepted |

## 7 Configuration

| Parameter | Value | Default setting | Description |
| :---: | :---: | :---: | :---: |
| Start delay time | 0 to 300 s | 0 s | Start delay time (in seconds) after Power ON. <br> All functions of the device are only active after this time has elapsed. |
| Level inhibit$\square$ |  | None | Access to the individual levels can be inhibited: |
|  | None |  | No level inhibited |
|  | Configuration |  | Configuration level inhibited |
|  | Complete |  | Configuration level and user level locked |

## Level inhibit

Siehe chapter 7.1.2 "Analog selector", Page 40

## Display/Operation on the device

The following settings for display/operation can also be carried out on the device.

| Parameter | Value | Default setting | Description |
| :--- | :--- | :--- | :--- |
| Display 1 | Analog selector, <br> siehe Seite 39 | Analog input | Display value of the upper LED display <br> (white) |
| Display 2 | No selection | Display value of the lower LED display <br> (green) |  |
| Display change <br> upon timer start | No function <br> Timer remaining run- <br> ning time <br> Timer runtime | Remaining run- <br> ning time <br> Timer | Is used on the device and in the setup <br> program. |
| Short-press back <br> button (< 3 s) | No function <br> Display timer value | No function | Function of the "Back" button in the basic <br> status when short-pressing the button <br> (less than 3 seconds) <br> Additional functions of the button can be <br> selected in the configuration of the indi- <br> vidual device functions (digital selector, <br> see page 39). |
| Long-press back <br> button (> 3 s) | No function <br> Display timer value | No function | Function of the "Back" button in the basic <br> status when long-pressing the button <br> (longer than 3 seconds) |
| Time-out <br> Operation | 0 s, 30 to 180 s | 180 s | If no key is operated after this time, the <br> device reverts to the basic status |
| Auto save | No <br> Yes | No | Editing mode is automatically exited after <br> a certain time and a change is accepted |
| Start <br> delay time | 0 to 300 s | 0 s | The entries do not become effective until <br> after this time |
| Message text 1 <br> signal | Digital selector, <br> siehe Seite 39 | No selection | Setting for which signal is to trigger mes- <br> sage text 1 |
| Message text 2 <br> signal | No selection | Setting for which signal is to trigger mes- <br> sage text 2 |  |
| Running speed | 0 to 4 | "4" corresponds to the fastest running <br> speed |  |

## 7 Configuration

### 7.3.3 Analog input

## Analog input with the setup program and on the device

The settings for the analog input of the device are specified in this menu.
The setup program detects which device version is being used.

| Parameter | Value | Default setting | Description |
| :---: | :---: | :---: | :---: |
| Signal type | 2L RTD temperature probe | The default setting depends on the device version. | Sensor type or signal type (depends on the device version) |
|  | 3L RTD temperature probe |  |  |
|  | Thermocouple |  |  |
|  | $0(4)$ to 20 mA |  |  |
|  | 0 to 10 V |  |  |
| Linearization | $\begin{aligned} & \text { Pt100 } \\ & \text { Pt1000 } \end{aligned}$ | The default setting depends on the device version. | Setting of linearization of the connected sensor |
|  | Linear |  | Only for voltage and current |
|  | Customer-specific |  | Customer-specific linearization with 4th order polynomial or grid points (configurable with setup program) |
| Decimal places |  | Auto | Number of pre-decimal and decimal places for the numerical display of the measured value |
|  | Auto |  | For the setting "Auto", the decimal place is automatically adjusted. |
|  | XXXX. |  | No decimal place |
|  | XXX.X |  | One decimal place |
| Measured value offset | -9999.0 to +9999.0 | 0.0 | The entire measuring range is adjusted up or down |
| Lead wire resistance | 0 to $60 \Omega$ | 0 | Resistive line resistance for two-wire circuit. |
| Filter time constant | 0.0 to 100 s | 0.6 s | Time constant (in seconds) for adjusting the digital input filter ( $0 \mathrm{~s}=$ filter off) |
| Fine Adjustment (only on device) | Off | Off | The function for performing fine adjustment is not active. <br> This function is available in the setup program under "Online parameter". |
|  | On |  | Fine adjustment is active. The following parameters can be input. |
| Fine adjustment on the device |  |  |  |
| Actual Start Value | -9999 to 9999 | 0.0 | Fine adjustment: device measured value at the lower measuring point |
| Actual end value | -9999 to 9999 | 100.0 | Fine adjustment: device measured value at the upper measuring point |
| Target Start Value | -9999 to 9999 | 0.0 | Fine adjustment: reference value at the lower measuring point |
| Target end value | -9999 to 9999 | 100.0 | Fine adjustment: reference value at the upper measuring point |

## 7 Configuration

### 7.3.4 Digital input

Digital input with the setup program and on the device
The settings for the digital input of the device are specified in this menu.
The setup program detects which device version is being used.

| Parameter | Value | Default setting | Description |
| :--- | :--- | :--- | :--- |
| Inversion | OFF | OFF | When "ON", the switching status is in- <br> verted. |
|  | ON |  |  |

### 7.3.5 Indicator

## Indicator with the setup program and on the device

The settings for the indicator are specified in this menu. The setup program detects which device version is being used.

| Parameter | Value | Default setting | Description |
| :---: | :---: | :---: | :---: |
| Min/max function | Off | Off | The function is inactive. |
|  | On |  | Min and max value of the indicator actual value (e.g. measured value) are determined and can be shown in a display. |
|  | Scrolling active |  | Min and max value are shown alternating to the indicator actual value (e.g. measured value) in the display where the indicator value is shown. |
| Indicator actual value | Analog input |  | Actual value for the indicator |
| Hold signal | Digital selector, see page 39 | No selection | Signal (high active) for activating the hold function <br> As long as the signal is active, the indicator value is "frozen". |
| Tare signal | Digital selector, see page 39 | No selection | Signal (active on rising edge) to activate the tare function (indicator value is set to zero). |
| Tare reset signal | Digital selector, see page 39 | No selection | Signal (active on rising edge) for resetting the tare function (indicator value equals the indicator actual value). |
| Min-max reset signal | Digital selector, see page 39 | No selection | Signal (active on rising edge) for resetting the min and max values to the current indicator value. |

## 7 Configuration

### 7.3.6 Limit value monitoring

Limit value monitoring function 1 to 3 with the setup program and on the device
The device is equipped with 3 limit value monitoring functions that can be individually configured. The following configuration parameters are available for each of the 3 limit value monitoring functions.

| Parameter | Value | Default setting | Description |
| :---: | :---: | :---: | :---: |
| Function | No function | No (empty) |  |
|  | AF7 |  | Fixed limit value |
|  | AF8 |  | As for AF7, output signal inverted |
| Actual value input | Analog selector, siehe Seite 40 | No selection | Analog value as actual value (signal to be monitored) |
| Limit value | -9999 to 9999 | 0 | Admissible deviation (AL) of the actual value |
| Switching differential |  | 1,000 | Switching differential in ${ }^{\circ} \mathrm{C}$ |
| Switching behavior |  | Symmetrically | Switching differential position around the limit value |
|  | Symmetrically |  | Switching differential is positioned with half above and half below the limit value |
|  | Non-standard left |  | Switching differential is below the limit value (typically) |
|  | Non-standard right |  | Switching differential is above the limit value (typically) |
| Start-up alarm suppression |  | Off | Alarm suppression during start-up phase |
|  | Off |  | Limit value monitoring function always operates according to its alarm function |
|  | On |  | Alarm suppression after power on or if limit value is changed |
| Switch-on delay time | 0 to 9999 | 0 | Delay time (in seconds) for activation of the output signal if alarm condition is present |
| Switch-off delay time | 0 to 9999 | 0 | Delay time (in seconds) for deactivation of the output signal if alarm condition is no longer present |
| Pulse time | 0 to 9999 | 0 | The output signal is deactivated automatically after this time (in seconds), even if the alarm condition is still present. If the alarm condition occurs again, the function re-starts (edge-triggered). |
| Response in case of a fault |  | Output off | Output signal in the event of a fault (e.g. in the case of overrange or underrange) |
|  | Output off |  | Output signal inactive |
|  | Output on |  | Output signal active |

## 7 Configuration

| Parameter | Value | Default setting | Description |
| :--- | :--- | :--- | :--- |
| Lock | Off | Off | Lock is not active. The output signal is re- <br> set as soon as the actual value is back in <br> the valid range |
|  | On | Lock is active. Lock can only be acknowl- <br> edged if the actual value is back in the <br> valid range |  |
|  |  | Lock is active. The lock can always be ac- <br> knowledged |  |
|  | Always acknowledge- <br> able |  |  |

## Function

The AF7 and AF8 alarm functions work with a fixed limit value which corresponds to the limit value entered.
Siehe chapter 7.3.6 "Limit value monitoring", Page 49

## Startup alarm suppression

Function of the startup alarm suppression:

- After power on, the alarm signals for the limit value monitoring function remains inactive, even if the actual value is in the alarm range.
- If the limit value is changed so that the actual value is then within the alarm range, while the actual value is outside of the alarm range, the alarm signal remains inactive.
- The limit value monitoring only starts to operate according to its alarm function again once the actual value has left the alarm range. This means that the alarm signal remains inactive until the actual value returns to the alarm range.


## Alarm functions

The following tables show the alarm functions AF7 and AF8 and the position of the hysteresis (non-standard left, standard, non-standard right).

## Switching functions in relation to limit value

AF7 and AF8 monitor whether the actual value exceeds or falls below a fixed limit value.

|  | Non-standard left | Symmetrically | Non-standard right |
| :---: | :---: | :---: | :---: |
| AF7 |  |  |  |
| AF8 |  |  |  |
| $\begin{aligned} & 0=\text { output signal not active } \\ & 1=\text { output signal active } \end{aligned}$ |  | $x=$ actual value | (1) Limit value (AL) <br> (2) Hysteresis |

## 7 Configuration

### 7.3.7 Service

## Setting service parameters using the setup program or on the device

The service parameters of the device can be specified in this menu.
All of the parameters can be configured either with the setup program or on the device.

| Parameter | Value | Default setting | Description |
| :---: | :---: | :---: | :---: |
| Service interval | 0 to 10,000,000 | 0 | Adjustable on the device up to 9999 <br> 0 : Limit value monitoring function switched off <br> $>0$ : limit value monitoring function of the service counter; the device activates the service signal if limit value is exceeded |
| Function | Number of switch operations | Number of switch operations | Counts the switching frequency of a binary signal |
|  | Time in hours |  | Counts the switch-on duration of a binary signal in hours |
|  | Time in days |  | Counts the switch-on duration of a binary signal in hours |
| Signal to be monitored | Digital selector, siehe Seite 39 | No selection | Binary signal whose switching frequency or switch-on duration is counted |
| Acknowledgement signal |  | No selection | Binary signal (high active) to acknowledge the service signal |
| Operation hours counter | Off | Off | Function is switched off The counter is reset to 0 |
|  | Display in hours |  | Device operating time in hours |
|  | Display in days |  | Device operating time in days |

### 7.3.8 Digital control signals

With the digital control signals, function blocks are available which can be used to adjust the application. Up to three binary signals can be linked using the AND/OR/XOR function (e.g. to display a message text linked to an event). Signals can be inverted and delayed. The behavior of the output signal is configurable (pulse).
2 control signals can be programmed. Any binary signal can serve as input (digital selector). The device can output this as follows:

- Inverted
- As a pulse (switch-on time, switch-off time)
- As a delayed switch-on or switch-off operation; (delay time = switch-on time, switch-off time)
- As a pulse signal (pulse time = switch-on time)
- As an AND/OR/XOR function with up to 3 binary signals

Furthermore, it is possible to determine the input signal of the falling edge. For a sampling rate, the output is then set in each case.

## NOTE!

The digital control signals are independent of a probe break/short circuit.
The control signals are inactive after power ON.

## 7 Configuration

## Digital control signals with the setup program and on the device

The digital control signals for adjusting applications are specified in this menu.
The setup program detects which device version is being used.

| Parameter | Value | Default setting | Description |
| :---: | :---: | :---: | :---: |
| Function | No function | No function | The output signal corresponds to the input signal (with inverting if necessary) |
|  | Pulse |  | A pulse-like signal is output as long as the input signal is active (high) |
|  | Delay |  | The output signal follows the course of the input signal, whereby the transfer from low to high status and vice versa is delayed |
|  | Pulse function |  | For the rising edge of the input signal, the output signal is activated and deactivated once the pulse time has elapsed (even if the input signal is still active). When the edge of the input signal rises again, the function re-starts |
|  | Rising edge |  | The output signal is activated for the duration of a cycle interval for the rising edge of the input signal. |
|  | Falling edge |  | The output signal is activated for the duration of a cycle interval for the falling edge of the input signal |
|  | OR function |  | Logical OR link of the input signals (signal 1, signal 2, signal 3) |
|  | AND function |  | Logical AND link |
|  | XOR function |  | Logical XOR link |
| Digital signal | Digital selector, see page 39 | No selection | Input signal (or OR/AND/XOR signal 1) |
| 2nd signal OR/ AND/XOR | Digital selector, see page 39 | No selection | Second input signal for the logical link |
| 3rd signal OR/ AND/XOR | Digital selector, see page 39 | No selection | Third input signal for the logical link |
| Inversion | No | No | Output signal (control signal) not inverted |
|  | Yes |  | Output signal (control signal) Inverted |
| Switch-on time/ delay | 0 to 9999 s | 0 | Pulses: Switch-on time (high status; in seconds) <br> Delay: delay time (in seconds) for the transition from low to high status |
| Switch-off time/ delay | 0 to 9999 s | 0 | Pulses: Switch-off time (low status; in seconds) <br> Delay: Delay time (in seconds) for the transition from high to low status |

## 7 Configuration

| Parameter | Value | Default setting | Description |
| :--- | :--- | :--- | :--- |
| Pulse time | 0 to 9999 s | 0 | Time (in seconds) for pulse func- <br> tion |

## 7 Configuration

### 7.3.9 Timer

## Timer with the setup program and on the device

The settings for the timer are specified in this menu.
The timer and its parameters are not dependent on the device version.

| Parameter | Value | Default setting | Description |
| :---: | :---: | :---: | :---: |
| Function | Off | Off | Timer is not active |
|  | On |  | Timer is active |
| Time display |  | mm:ss | Timer time unit (for input and display on the device) |
|  | mm:ss |  | Minutes:Seconds |
|  | hh:mm |  | Hours:Minutes |
|  | dd:hh |  | Days:Hours |
| Timer time |  |  | Time after timer start <br> The setting range depends on the configured time unit: |
|  | 00:00 to 59:59 | 00:00 | mm:ss |
|  | 00:00 to 23:59 | 00:00 | hh:mm |
|  | 00:00 to 99:23 | 00:00 | dd:hh |
| Lead time | 0 to 9999 s | 0 | Time before timer start (in seconds) |
| Timer end time | -1 to 9999 s | 0 | Time after timer end (in seconds) -1 = infinite, active until acknowledgement <br> The end signal is active during the afterrun time. |
| Acknowledgement signal | Digital selector see page 39 | No selection | Only if after-run time $\neq 0$ : signal (active for rising edge) to acknowledge the end signal |
| Start signal |  | No selection | Signal (active for rising edge) to start the timer <br> The start signal only works while the timer is not running or during the after-run time (not during the lead time or runtime) |
| Cancellation signal | Digital selector see page 39 | No selection | Signal (active for rising edge) to abort the timer <br> The cancellation signal only works during the runtime (not during the after-run time) |
| Stop signal |  | No selection | Signal (high active) for stopping the timer The stop signal only works during the lead time and runtime (not during the af-ter-run time). |
| Restart signal |  | No selection | Signal (active for rising edge) to reset and restart the timer <br> The restart signal only works during the runtime (not during the lead time or afterrun time); it cannot be used to start the timer <br> The lead time is not considered in case of a restart |

## 7 Configuration

| Parameter | Value | Default setting | Description |
| :--- | :--- | :--- | :--- |
| Output signal | High active | High active | Output signal: high active while timer is <br> running |
|  | Low active | Output signal: low active while timer is <br> running |  |
| Actual value <br> tolerance band | Analog selector <br> see page 40 | 0 | Actual value for tolerance band function |
| Setpoint value <br> tolerance band | 0 | 0 | Setpoint value for tolerance band function |
| Tolerance band | 0 to 9999 | 0 | Standard tolerance band (in Kelvin) <br> around the setpoint value <br> After the timer is started, the timer time <br> only runs from the point in time when the <br> actual value reaches the tolerance band <br> $0=$ Start without tolerance band |

### 7.3.10 Digital outputs

Digital outputs with the setup program and on the device
The settings for the digital outputs of the device are specified in this menu.
The setup program detects which device version is being used.

| Parameter | Value | Default setting | Description |
| :--- | :--- | :--- | :--- |
| Source | Digital selector <br> see page 39 | No selection | Signal that is issued at the digital output. <br> In the event of "No selection" the output <br> signal does not correspond to the active <br> status. |
| Inversion | No | No | Output signal not inverted |
|  | Yes |  | Output signal inverted |

## 7 Configuration

### 7.4 Device info - Menu

## Versions

Device-specific numbers (e.g. fabrication numbers) and version numbers for hardware and software of the device are displayed here.

## Service

Here, the counter statuses of the service counter and the operating hours counter, the status of the service signal, and the current error status of the device are displayed.
There is also a function available here for resetting the device to the default setting. By pressing the Menu/OK key (at least 5 seconds), the function is immediately executed.

## Hardware

Product group numbers (device type) and information about the device version are displayed here.

## 8 Maintenance, cleaning, troubleshooting

### 8.1 Service

There is a service counter and an operating hours counter in the device. The service counter counts when a signal that has to be monitored is set.

| Service counter | The device counts the number of "low-high edges" of a binary <br> signal. For service purposes, the device saves further parame- <br> ters irrespective of the individual settings: |
| :--- | :--- |
| Operation hours counter | Operation time for the service <br> - $\quad$ Terminal temperature <br> Switching cycles |
| Service interval counter | The device measures the switch-on time of a binary signal. |
| Operating time counter | If the device detects that the service interval (limit value) has <br> been exceeded, it raises the alarm by means of a service signal. <br> If the acknowledgement signal is reset, the service interval <br> counter restarts. |
| The device counts the operating hours only if the operating hours <br> counter is set to "Display in hours" or "Display in days". <br> If the operating hours counter is set to "Off", the device resets the <br> counter. <br> The counter counts up to the end of its value range and remains <br> at this point. |  |

### 8.2 Maintenance

The device is maintenance-free. In the event of damage, e.g. due to transport, maintenance, or faults during operating, it is not permissible to carry out repairs on the device. If the device is opened up, the warranty claim becomes void.
In the event of any damage, send the device to your responsible service partner. See back cover of this operating manual.

### 8.3 Cleaning

When delivered, the membrane keyboard and the display have a protective film. If the device front becomes dirty during operation, clean the device front with a soft cloth and mild soapy water.

## CAUTION!

## Risk of damaging the device front!

Cleaning agents such as gasoline, solvents, and abrasive cleaning agent as well as cleaning the device with a high-pressure cleaner can cause irreparable damage to the device front.

- Always clean the device front with a soft cloth and mild soapy water.


## 8 Maintenance, cleaning, troubleshooting

### 8.4 Troubleshooting

### 8.4.1 Types of errors

Potential types of errors:

- System errors that are detected by hardware or software (e.g. probe break, overrange)
- Fault messages set by the customer in the configuration
(Fault message if the binary input switches from 0 to 1 or if a set limit value is exceeded)
- Runtime error (e.g. division by 0, internal RAM storage faulty, etc.)


### 8.4.2 Error messages

| Display | Possible cause ${ }^{\text {a }}$ | Measures |
| :---: | :---: | :---: |
| <<<< | Measuring range underflow | Check probe and cable. (break, short circuit, reverse polarity) Check connection terminals Check configuration (signal type, linearization, resistance measuring range, scaling) |
| >>>> | Measuring range overflow |  |
| ++++ | Temperature for compensation outside |  |
| ---- | Probe or line break Probe or line short circuit Not a valid input value Display capacity exceeded invalid value |  |

## 9 Technical data

### 9.1 Analog input

## Thermocouples

| Designation | Typ <br> $\mathbf{e}$ | Standard | ITS | Measuring range | Accuracy $^{\text {a }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{Fe}-\mathrm{CuNi}$ | "L" | DIN 43710 (1985-12) | IPTS-68 | -200 to $+900^{\circ} \mathrm{C}$ | $\leq 0.4 \%$ |
| $\mathrm{Fe}-\mathrm{CuNi}$ | "J" | DIN EN 60584-1:2013 <br> IEC 60584-1:2013 | ITS-90 | -210 to $+1200^{\circ} \mathrm{C}$ | $\leq 0.4 \%$ from $-100^{\circ} \mathrm{C}$ |
| $\mathrm{NiCr-Ni}$ | "K" | DIN EN 60584-1:2013 <br> IEC 60584-1:2013 | ITS-90 | -270 to $+1300^{\circ} \mathrm{C}$ | $\leq 0.4 \%$ from $-80^{\circ} \mathrm{C}$ |

a Accuracy refers to the measuring range.

| Ambient temperature influence | $\leq 300 \mathrm{ppm} / \mathrm{K}$ |
| :--- | :--- |
| Cold junction | Internal or external (constant) |
| Cold junction temperature | $0^{\circ} \mathrm{C}$ (permanently set) |
| Input filter | Digital filter, 2nd order; filter constant can be set from 0 to 100.0 s |

## RTD temperature probe

| Designation | Standard | ITS | Connection <br> type | Measuring range | Accuracy ${ }^{\text {a }}$Measur- <br> ing cur- <br> rent |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Pt100 | DIN EN 60751:2008 <br> IEC 60751:2008 | ITS-90 | Two/three- <br> wire | -200 to $+600{ }^{\circ} \mathrm{C}$ | $\leq 0.25 \%$ | $500 \mu \mathrm{~A}$ |
| Pt1000 | DIN EN 60751:2009 <br> IEC 60751:2008 | ITS-90 | Two/three- <br> wire | -200 to $+600{ }^{\circ} \mathrm{C}$ | $\leq 0.25 \%$ | $100 \mu \mathrm{~A}$ |
| Customer-specific |  |  | 150 to $3000 \Omega$ | $\leq 0.25 \%$ | $<500 \mu \mathrm{~A}$ |  |

a Accuracy refers to the measuring range.

| Ambient temperature influence | $\leq 300 \mathrm{ppm} / \mathrm{K}$ |
| :--- | :--- |
| Sensor line resistance | Max. $30 \Omega$ per line |
| Input filter | Digital filter, 2nd order; filter constant can be set from 0 to 100.0 s |

## Voltage, current (standard signals)

| Designation | Measuring range | Accuracy $^{\text {a }}$ | Input resistance or <br> compliance voltage |
| :--- | :--- | :--- | :--- |
| Voltage | 0 to 10 V | $\leq 0.15 \%$ | $>100 \mathrm{k} \Omega$ |
| Current | 4 to 20 mA | $\leq 0.125 \%$ | $<2.5 \mathrm{~V}$ |
|  | 0 to 20 mA | $\leq 0.125 \%$ | $<2.5 \mathrm{~V}$ |

a Accuracy refers to the maximum measuring range. Small measuring spans lead to reduced linearization accuracy.

| Ambient temperature influence | $\leq 100 \mathrm{ppm} / \mathrm{K}$ |
| :--- | :--- |
| Deviation below/above the mea- <br> suring range | According to NAMUR recommendation NE 43 (only current input 4 to 20 mA) |
| Input filter | Digital filter, 2nd order; filter constant can be set from 0 to 100.0 s |

## Measuring circuit monitoring

The device behavior in the event of a malfunction is configurable.

## 9 Technical data

| Measuring probe | Measuring range underflow | Measuring range overflow | Short-circuit (probe/line) | Break (probel line) | Reverse polarity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RTD temperature probe | ++ | ++ | ++ | ++ | --- |
| Thermocouple | ++ | ++ | --- | ++ | $(+)^{\text {a }}$ |
| $\begin{aligned} & \hline \text { Current } \\ & 0 \text { to } 20 \mathrm{~mA} \end{aligned}$ | --- | ++ | --- | --- | --- |
| Current 4 to 20 mA | ++ | ++ | ++ | ++ | ++ |
| Voltage 0 to 10 V | --- | ++ | --- | --- | ++ |
| ++ = is detected |  | --- = is not detected |  | $(+)=$ is detected in certain conditions |  |

a Dependent on the set characteristic line

### 9.2 Digital input

Input for potential-free contact

Function

> Contact closed: input is active $\left(\mathrm{R}_{\mathrm{ON}}<1 \mathrm{k} \Omega\right)$
> Contact open: input is inactive $\left(\mathrm{R}_{\mathrm{OFF}}>100 \mathrm{k} \Omega\right)$

### 9.3 Digital outputs

| 1 relay (changeover contact) <br> Switching capacity <br> Contact life | Max. 10 A at DC 30 V or AC 250 V , resistive load <br> 100,000 switching operations at rated load | Order code <br> 23 |
| :--- | :--- | :--- |
| 1 relay (normally open contact) <br> Switching capacity <br> Contact life | Max. 5 A at DC 30 V or AC 250 V , resistive load <br> 100,000 switching operations at rated load |  |
| 1 relay (normally open contact) <br> Switching capacity <br> Contact lifeMax. 10 A at DC 30 V or AC 250 V , resistive load <br> 100,000 switching operations at rated load | Order code <br> 1 digital output DC $0 / 14 \mathrm{~V}$ <br> Output signal <br> Current | DC $0 / 14 \mathrm{~V} \pm 15 \%$ <br> Max. 20 mA (at nominal voltage 14 V$)$ |

### 9.4 Display

| 18-segment LCD displays |  |  |
| :---: | :---: | :---: |
| Digit height Color | Upper display: <br> 13 mm <br> white | Lower display: 4 mm Green |
| Places, including decimal places | 4 | 7 |
| Decimal places | 0, 1, or automatic (configurable) |  |

### 9.5 Electrical data

| Voltage supply according to the ordered version | 02 | AC $230 \mathrm{~V}-15 /+10 \%$, 48 to 63 Hz |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 05 | AC $115 \mathrm{~V}-15 /+10 \%, 48$ to 63 Hz |  |  |
|  | 30 | DC 12 to $24 \mathrm{~V},-15 /+15$ \% SELV |  |  |
| Electrical safety |  | acc. to DIN EN 61010, part 1 <br> Overvoltage category II to 300 V mains voltage, Pollution degree 2 |  |  |
| Power consumption Type 701580 |  | Type AC 230 V: Max. 3.3 W | Type AC 115 V : Max. 3.6 W | Type DC 12 to 24 V : Max. 1.7 W |
| Accuracy of timer |  | 1 \% |  |  |
| Sampling rate |  | 250 ms |  |  |
| Electrical connection |  | On the back via spring-cage terminals (PUSH IN technology) |  |  |
| Conductor cross section, mechanical <br> Wire or stranded wire (without ferrule) <br> Stranded wire with ferrule <br> Stripping length |  | Min. $0.2 \mathrm{~mm}^{2}$, max. $1.5 \mathrm{~mm}^{2}$ <br> Without plastic collar: $\min .0 .2 \mathrm{~mm}^{2}$, max. $1.5 \mathrm{~mm}^{2}$ With plastic collar: $\min .0 .2 \mathrm{~mm}^{2}$, $\max .0 .75 \mathrm{~mm}^{2}$ 8 mm |  |  |
| Conductor cross section, electric <br> 5 A load current <br> 10 A load current <br> 16 A load current |  | Min. $0.75 \mathrm{~mm}^{2}$ <br> Min. $1.0 \mathrm{~mm}^{2}$ <br> Min. $1.5 \mathrm{~mm}^{2}$ |  |  |

## 9 Technical data

### 9.6 Environmental influences

| Ambient temperature range <br> Storage <br> Operation | $\begin{aligned} & -30 \text { to }+70^{\circ} \mathrm{C} \\ & -10 \text { to }+55^{\circ} \mathrm{C} \end{aligned}$ |
| :---: | :---: |
| Site altitude | Max. 2000 m above sea level |
| Climatic environmental influences <br> Resistance to climatic conditions <br> Storage <br> Operation | According to DIN EN 60721-3 with extended temperature range $\leq 90 \%$ rel. humidity without condensation <br> According to class 1K2 <br> According to class 3K3 |
| Mechanical environmental influences <br> Storage <br> Transport <br> Operation | According to DIN EN 60721-3 <br> According to class 1 M 2 <br> According to class 2M2 <br> According to class 3M3 |
| Electromagnetic compatibility (EMC) <br> Interference emission <br> Interference immunity | Product family standard DIN EN 61326-1 Class Ba <br> Industrial requirement |

a The product is suitable for industrial use as well as for households and small businesses

### 9.7 Case

| Case type | Plastic case for panel mounting according to IEC 61554 (indoor use), cobalt blue <br> RAL 5013 |
| :--- | :--- |
| Case front | Membrane keyboard, <br> upper slope cobalt blue RAL 5013, lower slope silver grey RAL 7001 |
| Panel thickness | 1 to 10 mm |
| Case mounting | In panel using the supplied mounting frame or both mounting elements |
| Operating position | Any ${ }^{\text {a }}$ |
| Protection type | According to DIN EN 60529, IP65 on the front, IP20 on the back |
| Weight <br> Type 701580 | Max. 154 g |

a The maximum admissible ambient temperature only applies for the installation with the display in a vertical position.

### 9.8 Approvals and approval marks

| Approval mark | Test facility | Certificates/Certifica- <br> tion numbers | Inspection basis | Valid for |
| :--- | :--- | :--- | :--- | :--- |
| c UL us | Underwriters | E201387 | UL 61010-1 (3rd Ed.), | All types |
|  | Laboratories |  | CAN/CSA- <br> 22.2 No. 61010-1 <br> (3rd Ed.) |  |
|  |  |  |  |  |

The device is approved if the relevant approval mark is pictured on the device.

## JUMO

JUMO GmbH \& Co. KG
Street address:
Moritz-Juchheim-Straße 1
36039 Fulda, Germany
Delivery address:
Mackenrodtstraße 14
36039 Fulda, Germany
Postal address:
36035 Fulda, Germany
Phone: +49661 6003-0
Fax: $\quad+49661$ 6003-607
Email: mail@jumo.net
Internet: www.jumo.net

JUMO Instrument Co. Ltd.
JUMO House
Temple Bank, Riverway
Harlow, Essex, CM20 2DY, UK
Phone: +44 1279635533
Fax: $\quad$ +441279625029
Email: sales@jumo.co.uk
Internet: www.jumo.co.uk

JUMO Process Control, Inc.
6724 Joy Road
East Syracuse, NY 13057, USA

Phone: +13154375866
Fax: $\quad+13154375860$
Email: info.us@jumo.net
Internet: www.jumousa.com

